We have the following indirect implication of form equivalence classes:

109 \(\Rightarrow\) 254
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
109 \(\Rightarrow\) 66 clear
66 \(\Rightarrow\) 67 Existence of a basis implies the axiom of choice, Blass, A. 1984a, Contemporary Mathematics
67 \(\Rightarrow\) 89 On cardinals and their successors, Jech, T. 1966a, Bull. Acad. Polon. Sci. S'er. Sci. Math. Astronom. Phys.
89 \(\Rightarrow\) 254 Variations of Zorn's lemma, principles of cofinality, and Hausdorff's maximal principle, Part I and II, Harper, J. 1976, Notre Dame J. Formal Logic

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
109:

Every field \(F\) and every vector space \(V\) over \(F\) has the property that each linearly independent set \(A\subseteq V\) can be extended to a basis. H.Rubin/J.~Rubin [1985], pp 119ff.

66:

Every vector space over a field has a basis.

67:

\(MC(\infty,\infty)\) \((MC)\), The Axiom of Multiple Choice: For every set \(M\) of non-empty sets there is a function \(f\) such that \((\forall x\in M)(\emptyset\neq f(x)\subseteq x\) and \(f(x)\) is finite).

89:

Antichain Principle:  Every partially ordered set has a maximal antichain. Jech [1973b], p 133.

254:

\(Z(D,R,l)\): Every directed relation \((P,R)\) in which ramified subsets have least upper bounds, has a maximal element.

Comment:

Back