We have the following indirect implication of form equivalence classes:

66 \(\Rightarrow\) 104
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
66 \(\Rightarrow\) 67 Existence of a basis implies the axiom of choice, Blass, A. 1984a, Contemporary Mathematics
67 \(\Rightarrow\) 89 On cardinals and their successors, Jech, T. 1966a, Bull. Acad. Polon. Sci. S'er. Sci. Math. Astronom. Phys.
89 \(\Rightarrow\) 90 The Axiom of Choice, Jech, 1973b, page 133
90 \(\Rightarrow\) 51 Variations of Zorn's lemma, principles of cofinality, and Hausdorff's maximal principle, Part I and II, Harper, J. 1976, Notre Dame J. Formal Logic
51 \(\Rightarrow\) 25 Choice and cofinal well-ordered subsets, Morris, D.B. 1969, Notices Amer. Math. Soc.
25 \(\Rightarrow\) 34 clear
34 \(\Rightarrow\) 104 clear

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
66:

Every vector space over a field has a basis.

67:

\(MC(\infty,\infty)\) \((MC)\), The Axiom of Multiple Choice: For every set \(M\) of non-empty sets there is a function \(f\) such that \((\forall x\in M)(\emptyset\neq f(x)\subseteq x\) and \(f(x)\) is finite).

89:

Antichain Principle:  Every partially ordered set has a maximal antichain. Jech [1973b], p 133.

90:

\(LW\):  Every linearly ordered set can be well ordered. Jech [1973b], p 133.

51:

Cofinality Principle: Every linear ordering has a cofinal sub well ordering.  Sierpi\'nski [1918], p 117.

25:

\(\aleph _{\beta +1}\) is regular for all ordinals \(\beta\).

34:

\(\aleph_{1}\) is regular.

104:

There is a regular uncountable aleph. Jech [1966b], p 165 prob 11.26.

Comment:

Back