We have the following indirect implication of form equivalence classes:

66 \(\Rightarrow\) 349
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
66 \(\Rightarrow\) 67 Existence of a basis implies the axiom of choice, Blass, A. 1984a, Contemporary Mathematics
67 \(\Rightarrow\) 329 clear
329 \(\Rightarrow\) 349 clear

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
66:

Every vector space over a field has a basis.

67:

\(MC(\infty,\infty)\) \((MC)\), The Axiom of Multiple Choice: For every set \(M\) of non-empty sets there is a function \(f\) such that \((\forall x\in M)(\emptyset\neq f(x)\subseteq x\) and \(f(x)\) is finite).

329:

\(MC(\infty,WO)\): For  every set \(M\) of well orderable sets such that for all \(x\in X\), \(|x|\ge 1\), there is a function \(f\) such that for every \(x\in X\), \(f(x)\) is a finite, non-empty subset of \(x\).  (See Form 67.)

349:

\(MC(\infty,\aleph_0)\): For every set \(X\) of non-empty denumerable sets there is a function \(f\) such that for all \(x\in X\), \(f(x)\) is a finite, non-empty subset of \(x\).

Comment:

Back