We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
109 \(\Rightarrow\) 66 | clear |
66 \(\Rightarrow\) 367 | clear |
367 \(\Rightarrow\) 366 |
Eine Basis aller Zahlen und die unstetigen Losungen der Functionalgleichung: \(f(x+y) = f(x) + f(y)\), Hamel, G. 1905, Math. Ann. |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
109: | Every field \(F\) and every vector space \(V\) over \(F\) has the property that each linearly independent set \(A\subseteq V\) can be extended to a basis. H.Rubin/J.~Rubin [1985], pp 119ff. |
66: | Every vector space over a field has a basis. |
367: | There is a Hamel basis for \(\Bbb R\) as a vector space over \(\Bbb Q\). |
366: | There is a discontinuous function \(f: \Bbb R \to\Bbb R\) such that for all real \(x\) and \(y\), \(f(x+y)=f(x)+f(y)\). |
Comment: