We have the following indirect implication of form equivalence classes:

95-F \(\Rightarrow\) 375
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
95-F \(\Rightarrow\) 67 Some theorems on vector spaces and the axiom of choice, Bleicher, M. 1964, Fund. Math.
The Axiom of Choice, Jech, 1973b, page 148 problem 10.4
67 \(\Rightarrow\) 375 note-139

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
95-F:

Existence of Complementary Subspaces over a Field \(F\): If \(F\) is a field, then every vector space \(V\) over \(F\) has the property that if \(S\subseteq V\) is a subspace of \(V\), then there is a subspace \(S'\subseteq V\) such that \(S\cap S'= \{0\}\) and \(S\cup S'\) generates \(V\). H. Rubin/J. Rubin [1985], pp 119ff, and Jech [1973b], p 148 prob 10.4.

67:

\(MC(\infty,\infty)\) \((MC)\), The Axiom of Multiple Choice: For every set \(M\) of non-empty sets there is a function \(f\) such that \((\forall x\in M)(\emptyset\neq f(x)\subseteq x\) and \(f(x)\) is finite).

375:

Tietze-Urysohn Extension Theorem: If \((X,T)\) is a normal topological space, \(A\) is closed in \(X\), and \(f: A\to [0,1]\) is continuous, then there exists a continuous function \(g: X\to [0,1]\) which extends \(f\).

Comment:

Back