We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
430-p \(\Rightarrow\) 67 | clear |
67 \(\Rightarrow\) 381 |
Disjoint unions of topological spaces and choice, Howard, P. 1998b, Math. Logic Quart. |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
430-p: | (Where \(p\) is a prime) \(AL21\)\((p)\): Every vector space over \(\mathbb Z_p\) has the property that for every subspace \(S\) of \(V\), there is a subspace \(S'\) of \(V\) such that \(S \cap S' = \{ 0 \}\) and \(S \cup S'\) generates \(V\) in other words such that \(V = S \oplus S'\). Rubin, H./Rubin, J [1985], p.119, AL21. |
67: | \(MC(\infty,\infty)\) \((MC)\), The Axiom of Multiple Choice: For every set \(M\) of non-empty sets there is a function \(f\) such that \((\forall x\in M)(\emptyset\neq f(x)\subseteq x\) and \(f(x)\) is finite). |
381: | DUM: The disjoint union of metrizable spaces is metrizable. |
Comment: