We have the following indirect implication of form equivalence classes:

427 \(\Rightarrow\) 254
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
427 \(\Rightarrow\) 67 clear
67 \(\Rightarrow\) 89 On cardinals and their successors, Jech, T. 1966a, Bull. Acad. Polon. Sci. S'er. Sci. Math. Astronom. Phys.
89 \(\Rightarrow\) 254 Variations of Zorn's lemma, principles of cofinality, and Hausdorff's maximal principle, Part I and II, Harper, J. 1976, Notre Dame J. Formal Logic

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
427: \(\exists F\) AL20(\(F\)): There is a field \(F\) such that every vector space \(V\) over \(F\) has the property that every independent subset of \(V\) can be extended to a basis.  \ac{Bleicher} \cite{1964}, \ac{Rubin, H.\/Rubin, J \cite{1985, p.119, AL20}.
67:

\(MC(\infty,\infty)\) \((MC)\), The Axiom of Multiple Choice: For every set \(M\) of non-empty sets there is a function \(f\) such that \((\forall x\in M)(\emptyset\neq f(x)\subseteq x\) and \(f(x)\) is finite).

89:

Antichain Principle:  Every partially ordered set has a maximal antichain. Jech [1973b], p 133.

254:

\(Z(D,R,l)\): Every directed relation \((P,R)\) in which ramified subsets have least upper bounds, has a maximal element.

Comment:

Back