We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
28-p \(\Rightarrow\) 427 | clear |
427 \(\Rightarrow\) 67 | clear |
67 \(\Rightarrow\) 89 |
On cardinals and their successors, Jech, T. 1966a, Bull. Acad. Polon. Sci. S'er. Sci. Math. Astronom. Phys. |
89 \(\Rightarrow\) 90 | The Axiom of Choice, Jech, 1973b, page 133 |
90 \(\Rightarrow\) 51 |
Variations of Zorn's lemma, principles of cofinality, and Hausdorff's maximal principle, Part I and II, Harper, J. 1976, Notre Dame J. Formal Logic |
51 \(\Rightarrow\) 25 |
Choice and cofinal well-ordered subsets, Morris, D.B. 1969, Notices Amer. Math. Soc. |
25 \(\Rightarrow\) 34 | clear |
34 \(\Rightarrow\) 38 | The Axiom of Choice, Jech, [1973b] |
38 \(\Rightarrow\) 108 | clear |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
28-p: | (Where \(p\) is a prime) AL20(\(\mathbb Z_p\)): Every vector space \(V\) over \(\mathbb Z_p\) has the property that every linearly independent subset can be extended to a basis. (\(\mathbb Z_p\) is the \(p\) element field.) Rubin, H./Rubin, J. [1985], p. 119, Statement AL20 |
427: | \(\exists F\) AL20(\(F\)): There is a field \(F\) such that every vector space \(V\) over \(F\) has the property that every independent subset of \(V\) can be extended to a basis. \ac{Bleicher} \cite{1964}, \ac{Rubin, H.\/Rubin, J \cite{1985, p.119, AL20}. |
67: | \(MC(\infty,\infty)\) \((MC)\), The Axiom of Multiple Choice: For every set \(M\) of non-empty sets there is a function \(f\) such that \((\forall x\in M)(\emptyset\neq f(x)\subseteq x\) and \(f(x)\) is finite). |
89: | Antichain Principle: Every partially ordered set has a maximal antichain. Jech [1973b], p 133. |
90: | \(LW\): Every linearly ordered set can be well ordered. Jech [1973b], p 133. |
51: | Cofinality Principle: Every linear ordering has a cofinal sub well ordering. Sierpi\'nski [1918], p 117. |
25: | \(\aleph _{\beta +1}\) is regular for all ordinals \(\beta\). |
34: | \(\aleph_{1}\) is regular. |
38: | \({\Bbb R}\) is not the union of a countable family of countable sets. |
108: | There is an ordinal \(\alpha\) such that \(2^{\aleph _{\alpha}}\) is not the union of a denumerable set of denumerable sets. |
Comment: