We have the following indirect implication of form equivalence classes:

334 \(\Rightarrow\) 145
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
334 \(\Rightarrow\) 67 clear
67 \(\Rightarrow\) 89 On cardinals and their successors, Jech, T. 1966a, Bull. Acad. Polon. Sci. S'er. Sci. Math. Astronom. Phys.
89 \(\Rightarrow\) 90 The Axiom of Choice, Jech, 1973b, page 133
90 \(\Rightarrow\) 91 The Axiom of Choice, Jech, 1973b, page 133
91 \(\Rightarrow\) 145 P-Raüme and Auswahlaxiom, Brunner, N. 1984c, Rend. Circ. Mat. Palermo.

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
334:

\(MC(\infty,\infty,\hbox{ even})\): For every set \(X\) of  sets such that for all \(x\in X\), \(|x|\ge 2\), there is a function \(f\) such that  for every \(x\in X\), \(f(x)\) is a finite, non-empty subset of \(x\) and \(|f(x)|\) is even.

67:

\(MC(\infty,\infty)\) \((MC)\), The Axiom of Multiple Choice: For every set \(M\) of non-empty sets there is a function \(f\) such that \((\forall x\in M)(\emptyset\neq f(x)\subseteq x\) and \(f(x)\) is finite).

89:

Antichain Principle:  Every partially ordered set has a maximal antichain. Jech [1973b], p 133.

90:

\(LW\):  Every linearly ordered set can be well ordered. Jech [1973b], p 133.

91:

\(PW\):  The power set of a well ordered set can be well ordered.

145:

Compact \(P_0\)-spaces are Dedekind finite. (A \(P_0\)-space is a topological space in which the intersection of a countable collection of open sets is open.)

Comment:

Back