We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
95-F \(\Rightarrow\) 67 |
Some theorems on vector spaces and the axiom of choice, Bleicher, M. 1964, Fund. Math. The Axiom of Choice, Jech, 1973b, page 148 problem 10.4 |
67 \(\Rightarrow\) 89 |
On cardinals and their successors, Jech, T. 1966a, Bull. Acad. Polon. Sci. S'er. Sci. Math. Astronom. Phys. |
89 \(\Rightarrow\) 90 | The Axiom of Choice, Jech, 1973b, page 133 |
90 \(\Rightarrow\) 51 |
Variations of Zorn's lemma, principles of cofinality, and Hausdorff's maximal principle, Part I and II, Harper, J. 1976, Notre Dame J. Formal Logic |
51 \(\Rightarrow\) 337 |
Non-constructive properties of the real numbers, Howard, P. 2001, Math. Logic Quart. |
337 \(\Rightarrow\) 92 | clear |
92 \(\Rightarrow\) 94 | clear |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
95-F: | Existence of Complementary Subspaces over a Field \(F\): If \(F\) is a field, then every vector space \(V\) over \(F\) has the property that if \(S\subseteq V\) is a subspace of \(V\), then there is a subspace \(S'\subseteq V\) such that \(S\cap S'= \{0\}\) and \(S\cup S'\) generates \(V\). H. Rubin/J. Rubin [1985], pp 119ff, and Jech [1973b], p 148 prob 10.4. |
67: | \(MC(\infty,\infty)\) \((MC)\), The Axiom of Multiple Choice: For every set \(M\) of non-empty sets there is a function \(f\) such that \((\forall x\in M)(\emptyset\neq f(x)\subseteq x\) and \(f(x)\) is finite). |
89: | Antichain Principle: Every partially ordered set has a maximal antichain. Jech [1973b], p 133. |
90: | \(LW\): Every linearly ordered set can be well ordered. Jech [1973b], p 133. |
51: | Cofinality Principle: Every linear ordering has a cofinal sub well ordering. Sierpi\'nski [1918], p 117. |
337: | \(C(WO\), uniformly linearly ordered): If \(X\) is a well ordered collection of non-empty sets and there is a function \(f\) defined on \(X\) such that for every \(x\in X\), \(f(x)\) is a linear ordering of \(x\), then there is a choice function for \(X\). |
92: | \(C(WO,{\Bbb R})\): Every well ordered family of non-empty subsets of \({\Bbb R}\) has a choice function. |
94: | \(C(\aleph_{0},\infty,{\Bbb R})\): Every denumerable family of non-empty sets of reals has a choice function. Jech [1973b], p 148 prob 10.1. |
Comment: