We have the following indirect implication of form equivalence classes:

67 \(\Rightarrow\) 395
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
67 \(\Rightarrow\) 112 clear
112 \(\Rightarrow\) 395 clear

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
67:

\(MC(\infty,\infty)\) \((MC)\), The Axiom of Multiple Choice: For every set \(M\) of non-empty sets there is a function \(f\) such that \((\forall x\in M)(\emptyset\neq f(x)\subseteq x\) and \(f(x)\) is finite).

112:

\(MC(\infty,LO)\): For every family \(X\) of non-empty sets each of which can be linearly ordered there is a function \(f\) such that for all \(y\in X\), \(f(y)\) is a non-empty finite subset of \(y\).

395:

\(MC(LO,LO)\): For each linearly ordered family of non-empty linearly orderable sets \(X\), there is a function \(f\) such that for all \(x\in X\) \(f(x)\) is a non-empty, finite subset of \(x\).

Comment:

Back