We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
218 \(\Rightarrow\) 67 | clear |
67 \(\Rightarrow\) 144 |
Axioms of multiple choice, Levy, A. 1962, Fund. Math. |
144 \(\Rightarrow\) 416 |
Constructive order theory, Ern'e, M. 2001, Math. Logic Quart. |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
218: | \((\forall n\in\omega - \{0\}) MC(\infty,\infty \), relatively prime to \(n\)): \(\forall n\in\omega -\{0\}\), if \(X\) is a set of non-empty sets, then there is a function \(f\) such that for all \(x\in X\), \(f(x)\) is a non-empty, finite subset of \(x\) and \(|f(x)|\) is relatively prime to \(n\). |
67: | \(MC(\infty,\infty)\) \((MC)\), The Axiom of Multiple Choice: For every set \(M\) of non-empty sets there is a function \(f\) such that \((\forall x\in M)(\emptyset\neq f(x)\subseteq x\) and \(f(x)\) is finite). |
144: | Every set is almost well orderable. |
416: | Every non-compact topological space \(S\) is the union of a set that is well-ordered by inclusion and consists of open proper subsets of \(S\). |
Comment: