We have the following indirect implication of form equivalence classes:

218 \(\Rightarrow\) 416
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
218 \(\Rightarrow\) 67 clear
67 \(\Rightarrow\) 144 Axioms of multiple choice, Levy, A. 1962, Fund. Math.
144 \(\Rightarrow\) 416 Constructive order theory, Ern'e, M. 2001, Math. Logic Quart.

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
218:

\((\forall n\in\omega - \{0\}) MC(\infty,\infty \), relatively prime to \(n\)): \(\forall n\in\omega -\{0\}\), if \(X\) is a set of non-empty sets, then  there  is  a function \(f\) such that for all \(x\in X\), \(f(x)\) is a non-empty, finite subset of \(x\) and \(|f(x)|\) is relatively prime to \(n\).

67:

\(MC(\infty,\infty)\) \((MC)\), The Axiom of Multiple Choice: For every set \(M\) of non-empty sets there is a function \(f\) such that \((\forall x\in M)(\emptyset\neq f(x)\subseteq x\) and \(f(x)\) is finite).

144:

Every set is almost well orderable.

416:

Every non-compact topological space \(S\) is the union of a set that is well-ordered by inclusion and consists of open proper subsets of \(S\).

Comment:

Back