We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
334 \(\Rightarrow\) 67 | clear |
67 \(\Rightarrow\) 329 | clear |
329 \(\Rightarrow\) 349 | clear |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
334: | \(MC(\infty,\infty,\hbox{ even})\): For every set \(X\) of sets such that for all \(x\in X\), \(|x|\ge 2\), there is a function \(f\) such that for every \(x\in X\), \(f(x)\) is a finite, non-empty subset of \(x\) and \(|f(x)|\) is even. |
67: | \(MC(\infty,\infty)\) \((MC)\), The Axiom of Multiple Choice: For every set \(M\) of non-empty sets there is a function \(f\) such that \((\forall x\in M)(\emptyset\neq f(x)\subseteq x\) and \(f(x)\) is finite). |
329: | \(MC(\infty,WO)\): For every set \(M\) of well orderable sets such that for all \(x\in X\), \(|x|\ge 1\), there is a function \(f\) such that for every \(x\in X\), \(f(x)\) is a finite, non-empty subset of \(x\). (See Form 67.) |
349: | \(MC(\infty,\aleph_0)\): For every set \(X\) of non-empty denumerable sets there is a function \(f\) such that for all \(x\in X\), \(f(x)\) is a finite, non-empty subset of \(x\). |
Comment: