We have the following indirect implication of form equivalence classes:
| Implication | Reference |
|---|---|
| 39 \(\Rightarrow\) 8 | clear |
| 8 \(\Rightarrow\) 9 | Was sind und was sollen die Zollen?, Dedekind, [1888] |
| 9 \(\Rightarrow\) 13 | clear |
| 13 \(\Rightarrow\) 199(\(n\)) | clear |
Here are the links and statements of the form equivalence classes referenced above:
| Howard-Rubin Number | Statement |
|---|---|
| 39: | \(C(\aleph_{1},\infty)\): Every set \(A\) of non-empty sets such that \(\vert A\vert = \aleph_{1}\) has a choice function. Moore, G. [1982], p. 202. |
| 8: | \(C(\aleph_{0},\infty)\): |
| 9: | Finite \(\Leftrightarrow\) Dedekind finite: \(W_{\aleph_{0}}\) Jech [1973b]: \(E(I,IV)\) Howard/Yorke [1989]): Every Dedekind finite set is finite. |
| 13: | Every Dedekind finite subset of \({\Bbb R}\) is finite. |
| 199(\(n\)): | (For \(n\in\omega-\{0,1\}\)) If all \(\varSigma^{1}_{n}\), Dedekind finite subsets of \({}^{\omega }\omega\) are finite, then all \(\varPi^1_n\) Dedekind finite subsets of \({}^{\omega} \omega\) are finite. |
Comment: