We have the following indirect implication of form equivalence classes:

99 \(\Rightarrow\) 223
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
99 \(\Rightarrow\) 70 Handbook of Analysis and its Applications, Schechter, [1996a]
70 \(\Rightarrow\) 206 clear
206 \(\Rightarrow\) 223 clear

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
99:

Rado's Selection Lemma: Let \(\{K(\lambda): \lambda \in\Lambda\}\) be a family  of finite subsets (of \(X\)) and suppose for each finite \(S\subseteq\Lambda\) there is a function \(\gamma(S): S \rightarrow X\) such that \((\forall\lambda\in S)(\gamma(S)(\lambda)\in K(\lambda))\).  Then there is an \(f: \Lambda\rightarrow X\) such that for every finite \(S\subseteq\Lambda\) there is a finite \(T\) such that \(S\subseteq T\subseteq\Lambda\) and such that \(f\) and \(\gamma (T)\) agree on S.

70:

There is a non-trivial ultrafilter on \(\omega\). Jech [1973b], prob 5.24.

206:

The existence of a non-principal ultrafilter: There exists an infinite set \(X\) and a non-principal ultrafilter on \(X\).

223:

There is an infinite set \(X\) and a non-principal measure on \(\cal P(X)\).

Comment:

Back