We have the following indirect implication of form equivalence classes:

214 \(\Rightarrow\) 131
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
214 \(\Rightarrow\) 76 clear
76 \(\Rightarrow\) 131 clear

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
214:

\(Z(\omega)\): For every family \(A\) of infinite sets, there is a function \(f\) such that for all \(y\in A\), \(f(y)\) is a non-empty subset of \(y\) and \(|f(y)|=\aleph_{0}\).

76:

\(MC_\omega(\infty,\infty)\) (\(\omega\)-MC): For every family \(X\) of pairwise disjoint non-empty sets, there is a function \(f\) such that for each \(x\in X\), f(x) is a non-empty countable subset of \(x\).

131:

\(MC_\omega(\aleph_0,\infty)\): For every denumerable family \(X\) of pairwise disjoint non-empty sets, there is a function \(f\) such that for each \(x\in X\), f(x) is a non-empty countable subset of \(x\).

Comment:

Back