We have the following indirect implication of form equivalence classes:
| Implication | Reference |
|---|---|
| 95-F \(\Rightarrow\) 67 |
Some theorems on vector spaces and the axiom of choice, Bleicher, M. 1964, Fund. Math. The Axiom of Choice, Jech, 1973b, page 148 problem 10.4 |
| 67 \(\Rightarrow\) 89 |
On cardinals and their successors, Jech, T. 1966a, Bull. Acad. Polon. Sci. S'er. Sci. Math. Astronom. Phys. |
| 89 \(\Rightarrow\) 90 | The Axiom of Choice, Jech, 1973b, page 133 |
| 90 \(\Rightarrow\) 91 | The Axiom of Choice, Jech, 1973b, page 133 |
| 91 \(\Rightarrow\) 79 | clear |
| 79 \(\Rightarrow\) 70 | clear |
| 70 \(\Rightarrow\) 206 | clear |
Here are the links and statements of the form equivalence classes referenced above:
| Howard-Rubin Number | Statement |
|---|---|
| 95-F: | Existence of Complementary Subspaces over a Field \(F\): If \(F\) is a field, then every vector space \(V\) over \(F\) has the property that if \(S\subseteq V\) is a subspace of \(V\), then there is a subspace \(S'\subseteq V\) such that \(S\cap S'= \{0\}\) and \(S\cup S'\) generates \(V\). H. Rubin/J. Rubin [1985], pp 119ff, and Jech [1973b], p 148 prob 10.4. |
| 67: | \(MC(\infty,\infty)\) \((MC)\), The Axiom of Multiple Choice: For every set \(M\) of non-empty sets there is a function \(f\) such that \((\forall x\in M)(\emptyset\neq f(x)\subseteq x\) and \(f(x)\) is finite). |
| 89: | Antichain Principle: Every partially ordered set has a maximal antichain. Jech [1973b], p 133. |
| 90: | \(LW\): Every linearly ordered set can be well ordered. Jech [1973b], p 133. |
| 91: | \(PW\): The power set of a well ordered set can be well ordered. |
| 79: | \({\Bbb R}\) can be well ordered. Hilbert [1900], p 263. |
| 70: | There is a non-trivial ultrafilter on \(\omega\). Jech [1973b], prob 5.24. |
| 206: | The existence of a non-principal ultrafilter: There exists an infinite set \(X\) and a non-principal ultrafilter on \(X\). |
Comment: