We have the following indirect implication of form equivalence classes:

79 \(\Rightarrow\) 104
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
79 \(\Rightarrow\) 94 clear
94 \(\Rightarrow\) 34 Non-constructive properties of the real numbers, Howard, P. 2001, Math. Logic Quart.
34 \(\Rightarrow\) 104 clear

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
79:

\({\Bbb R}\) can be well ordered.  Hilbert [1900], p 263.

94:

\(C(\aleph_{0},\infty,{\Bbb R})\): Every denumerable family of non-empty sets of reals  has a choice function. Jech [1973b], p 148 prob 10.1.

34:

\(\aleph_{1}\) is regular.

104:

There is a regular uncountable aleph. Jech [1966b], p 165 prob 11.26.

Comment:

Back