We have the following indirect implication of form equivalence classes:

3 \(\Rightarrow\) 82
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
3 \(\Rightarrow\) 9 Cardinal addition and the axiom of choice, Howard, P. 1974, Bull. Amer. Math. Soc.
9 \(\Rightarrow\) 82 clear

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
3:  \(2m = m\): For all infinite cardinals \(m\), \(2m = m\).
9:

Finite \(\Leftrightarrow\) Dedekind finite: \(W_{\aleph_{0}}\) Jech [1973b]: \(E(I,IV)\) Howard/Yorke [1989]): Every Dedekind finite set is finite.

82:

\(E(I,III)\) (Howard/Yorke [1989]): If \(X\) is infinite then \(\cal P(X)\) is Dedekind infinite. (\(X\) is finite \(\Leftrightarrow {\cal P}(X)\) is Dedekind finite.)

Comment:

Back