We have the following indirect implication of form equivalence classes:

358 \(\Rightarrow\) 18
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
358 \(\Rightarrow\) 80 clear
80 \(\Rightarrow\) 18 clear

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
358:

\(KW(\aleph_0,<\aleph_0)\), The Kinna-Wagner Selection Principle for a denumerable family of finite sets: For every denumerable set \(M\) of finite sets there is a function \(f\) such that for all \(A\in M\), if \(|A| > 1\) then \(\emptyset\neq f(A)\subsetneq A\).

80:

\(C(\aleph_{0},2)\):  Every denumerable set of  pairs has  a  choice function.

18:

\(PUT(\aleph_{0},2,\aleph_{0})\):  The union of a denumerable family of pairwise disjoint pairs has a denumerable subset.

Comment:

Back