We have the following indirect implication of form equivalence classes:

28-p \(\Rightarrow\) 387
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
28-p \(\Rightarrow\) 427 clear
427 \(\Rightarrow\) 67 clear
67 \(\Rightarrow\) 126 clear
126 \(\Rightarrow\) 82 note-76
82 \(\Rightarrow\) 387 "Dense orderings, partitions, and weak forms of choice", Gonzalez, C. 1995a, Fund. Math.

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
28-p:

(Where \(p\) is a prime) AL20(\(\mathbb Z_p\)): Every vector space \(V\) over \(\mathbb Z_p\) has the property that every linearly independent subset can be extended to a basis.  (\(\mathbb Z_p\) is the \(p\) element field.) Rubin, H./Rubin, J. [1985], p. 119, Statement AL20

427: \(\exists F\) AL20(\(F\)): There is a field \(F\) such that every vector space \(V\) over \(F\) has the property that every independent subset of \(V\) can be extended to a basis.  \ac{Bleicher} \cite{1964}, \ac{Rubin, H.\/Rubin, J \cite{1985, p.119, AL20}.
67:

\(MC(\infty,\infty)\) \((MC)\), The Axiom of Multiple Choice: For every set \(M\) of non-empty sets there is a function \(f\) such that \((\forall x\in M)(\emptyset\neq f(x)\subseteq x\) and \(f(x)\) is finite).

126:

\(MC(\aleph_0,\infty)\), Countable axiom of multiple choice: For every denumerable set \(X\) of non-empty sets there is a function \(f\) such that for all \(y\in X\), \(f(y)\) is a non-empty finite subset of \(y\).

82:

\(E(I,III)\) (Howard/Yorke [1989]): If \(X\) is infinite then \(\cal P(X)\) is Dedekind infinite. (\(X\) is finite \(\Leftrightarrow {\cal P}(X)\) is Dedekind finite.)

387:

DPO:  Every infinite set has a non-trivial, dense partial order.  (A partial ordering \(<\) on a set \(X\) is dense if \((\forall x, y\in X)(x \lt y \to (\exists z \in X)(x \lt z \lt y))\) and is non-trivial if \((\exists x,y\in X)(x \lt y)\)).

Comment:

Back