We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
95-F \(\Rightarrow\) 67 |
Some theorems on vector spaces and the axiom of choice, Bleicher, M. 1964, Fund. Math. The Axiom of Choice, Jech, 1973b, page 148 problem 10.4 |
67 \(\Rightarrow\) 126 | clear |
126 \(\Rightarrow\) 82 | note-76 |
82 \(\Rightarrow\) 83 |
Definitions of finite, Howard, P. 1989, Fund. Math. |
83 \(\Rightarrow\) 64 | The Axiom of Choice, Jech, 1973b, page 52 problem 4.10 |
64 \(\Rightarrow\) 127 |
Amorphe Potenzen kompakter Raume, Brunner, N. 1984b, Arch. Math. Logik Grundlagenforschung |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
95-F: | Existence of Complementary Subspaces over a Field \(F\): If \(F\) is a field, then every vector space \(V\) over \(F\) has the property that if \(S\subseteq V\) is a subspace of \(V\), then there is a subspace \(S'\subseteq V\) such that \(S\cap S'= \{0\}\) and \(S\cup S'\) generates \(V\). H. Rubin/J. Rubin [1985], pp 119ff, and Jech [1973b], p 148 prob 10.4. |
67: | \(MC(\infty,\infty)\) \((MC)\), The Axiom of Multiple Choice: For every set \(M\) of non-empty sets there is a function \(f\) such that \((\forall x\in M)(\emptyset\neq f(x)\subseteq x\) and \(f(x)\) is finite). |
126: | \(MC(\aleph_0,\infty)\), Countable axiom of multiple choice: For every denumerable set \(X\) of non-empty sets there is a function \(f\) such that for all \(y\in X\), \(f(y)\) is a non-empty finite subset of \(y\). |
82: | \(E(I,III)\) (Howard/Yorke [1989]): If \(X\) is infinite then \(\cal P(X)\) is Dedekind infinite. (\(X\) is finite \(\Leftrightarrow {\cal P}(X)\) is Dedekind finite.) |
83: | \(E(I,II)\) Howard/Yorke [1989]: \(T\)-finite is equivalent to finite. |
64: | \(E(I,Ia)\) There are no amorphous sets. (Equivalently, every infinite set is the union of two disjoint infinite sets.) |
127: | An amorphous power of a compact \(T_2\) space, which as a set is well orderable, is well orderable. |
Comment: