We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
113 \(\Rightarrow\) 8 |
Tychonoff's theorem implies AC, Kelley, J.L. 1950, Fund. Math. Products of compact spaces in the least permutation model, Brunner, N. 1985a, Z. Math. Logik Grundlagen Math. |
8 \(\Rightarrow\) 9 | Was sind und was sollen die Zollen?, Dedekind, [1888] |
9 \(\Rightarrow\) 17 |
The independence of Ramsey's theorem, Kleinberg, E.M. 1969, J. Symbolic Logic |
17 \(\Rightarrow\) 124 |
Hilbertraume mit amorphen Basen (English summary), Brunner, N. 1984a, Compositio Math. |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
113: | Tychonoff's Compactness Theorem for Countably Many Spaces: The product of a countable set of compact spaces is compact. |
8: | \(C(\aleph_{0},\infty)\): |
9: | Finite \(\Leftrightarrow\) Dedekind finite: \(W_{\aleph_{0}}\) Jech [1973b]: \(E(I,IV)\) Howard/Yorke [1989]): Every Dedekind finite set is finite. |
17: | Ramsey's Theorem I: If \(A\) is an infinite set and the family of all 2 element subsets of \(A\) is partitioned into 2 sets \(X\) and \(Y\), then there is an infinite subset \(B\subseteq A\) such that all 2 element subsets of \(B\) belong to \(X\) or all 2 element subsets of \(B\) belong to \(Y\). (Also, see Form 325.), Jech [1973b], p 164 prob 11.20. |
124: | Every operator on a Hilbert space with an amorphous base is the direct sum of a finite matrix and a scalar operator. (A set is amorphous if it is not the union of two disjoint infinite sets.) |
Comment: