We have the following indirect implication of form equivalence classes:

213 \(\Rightarrow\) 18
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
213 \(\Rightarrow\) 85 clear
85 \(\Rightarrow\) 32 clear
32 \(\Rightarrow\) 10 clear
10 \(\Rightarrow\) 80 clear
80 \(\Rightarrow\) 18 clear

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
213:

\(C(\infty,\aleph_{1})\): If \((\forall y\in X)(|y| = \aleph_{1})\) then \(X\) has a choice function.

85:

\(C(\infty,\aleph_{0})\):  Every family of denumerable sets has  a choice function.  Jech [1973b] p 115 prob 7.13.

32:

\(C(\aleph_0,\le\aleph_0)\): Every denumerable set of non-empty countable sets  has a choice function.

10:

\(C(\aleph_{0},< \aleph_{0})\):  Every denumerable family of non-empty finite sets has a choice function.

80:

\(C(\aleph_{0},2)\):  Every denumerable set of  pairs has  a  choice function.

18:

\(PUT(\aleph_{0},2,\aleph_{0})\):  The union of a denumerable family of pairwise disjoint pairs has a denumerable subset.

Comment:

Back