We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
213 \(\Rightarrow\) 85 | clear |
85 \(\Rightarrow\) 32 | clear |
32 \(\Rightarrow\) 10 | clear |
10 \(\Rightarrow\) 423 | clear |
423 \(\Rightarrow\) 374-n | clear |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
213: | \(C(\infty,\aleph_{1})\): If \((\forall y\in X)(|y| = \aleph_{1})\) then \(X\) has a choice function. |
85: | \(C(\infty,\aleph_{0})\): Every family of denumerable sets has a choice function. Jech [1973b] p 115 prob 7.13. |
32: | \(C(\aleph_0,\le\aleph_0)\): Every denumerable set of non-empty countable sets has a choice function. |
10: | \(C(\aleph_{0},< \aleph_{0})\): Every denumerable family of non-empty finite sets has a choice function. |
423: | \(\forall n\in \omega-\{o,1\}\), \(C(\aleph_0, n)\) : For every \(n\in \omega - \{0,1\}\), every denumerable set of \(n\) element sets has a choice function. |
374-n: | \(UT(\aleph_0,n,\aleph_0)\) for \(n\in\omega -\{0,1\}\): The union of a denumerable set of \(n\)-element sets is denumerable. |
Comment: