We have the following indirect implication of form equivalence classes:

213 \(\Rightarrow\) 132
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
213 \(\Rightarrow\) 85 clear
85 \(\Rightarrow\) 62 clear
62 \(\Rightarrow\) 132 Sequential compactness and the axiom of choice, Brunner, N. 1983b, Notre Dame J. Formal Logic

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
213:

\(C(\infty,\aleph_{1})\): If \((\forall y\in X)(|y| = \aleph_{1})\) then \(X\) has a choice function.

85:

\(C(\infty,\aleph_{0})\):  Every family of denumerable sets has  a choice function.  Jech [1973b] p 115 prob 7.13.

62:

\(C(\infty,< \aleph_{0})\):  Every set of non-empty finite  sets  has  a choice function.

132:

\(PC(\infty, <\aleph_0,\infty)\):  Every infinite family of finite  sets has an infinite subfamily with a choice function.

Comment:

Back