We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
174-alpha \(\Rightarrow\) 86-alpha |
"Representing multi-algebras by algebras, the axiom of choice and the axiom of dependent choice", Howard, P. 1981, Algebra Universalis |
86-alpha \(\Rightarrow\) 196-alpha |
Successive large cardinals, Bull Jr., E. L. 1978, Ann. Math. Logic |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
174-alpha: | \(RM1,\aleph_{\alpha }\): The representation theorem for multi-algebras with \(\aleph_{\alpha }\) unary operations: Assume \((A,F)\) is a multi-algebra with \(\aleph_{\alpha }\) unary operations (and no other operations). Then there is an algebra \((B,G)\) with \(\aleph_{\alpha }\) unary operations and an equivalence relation \(E\) on \(B\) such that \((B/E,G/E)\) and \((A,F)\) are isomorphic multi-algebras. |
86-alpha: | \(C(\aleph_{\alpha},\infty)\): If \(X\) is a set of non-empty sets such that \(|X| = \aleph_{\alpha }\), then \(X\) has a choice function. |
196-alpha: | \(\aleph_{\alpha}\) and \(\aleph_{\alpha+1}\) are not both measurable. |
Comment: