We have the following indirect implication of form equivalence classes:

326 \(\Rightarrow\) 127
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
326 \(\Rightarrow\) 88 Logic at Work: Essay Dedicated to the Memory of Helen Rasiowa, Wojtylak, 1999,
88 \(\Rightarrow\) 64 Classes of Dedekind finite cardinals, Truss, J. K. 1974a, Fund. Math.
64 \(\Rightarrow\) 127 Amorphe Potenzen kompakter Raume, Brunner, N. 1984b, Arch. Math. Logik Grundlagenforschung

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
326:

2-SAT:  Restricted Compactness Theorem for Propositional Logic III:   If \(\Sigma\) is a set of formulas in a propositional language such that every finite subset of \(\Sigma\) is satisfiable and if every formula in \(\Sigma\) is a disjunction of at most two literals, then \(\Sigma\) is satisfiable. (A literal is a propositional variable or its negation.) Wojtylak [1999] (listed as Wojtylak [1995])

88:

  \(C(\infty ,2)\):  Every family of pairs has a choice function.

64:

\(E(I,Ia)\) There are no amorphous sets. (Equivalently, every infinite set is the union of two disjoint infinite sets.)

127:

An amorphous power of a compact \(T_2\) space, which as a set is well orderable, is well orderable.

Comment:

Back