We have the following indirect implication of form equivalence classes:

333 \(\Rightarrow\) 276
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
333 \(\Rightarrow\) 88 clear
88 \(\Rightarrow\) 276

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
333:

\(MC(\infty,\infty,\mathrm{odd})\): For every set \(X\) of  sets such that for all \(x\in X\), \(|x|\ge 1\), there is a function \(f\) such that  for every \(x\in X\), \(f(x)\) is a finite, non-empty subset of \(x\) and \(|f(x)|\) is odd.

88:

  \(C(\infty ,2)\):  Every family of pairs has a choice function.

276:

\(E(V'',III)\): For every set \(A\), \({\cal P}(A)\) is Dedekind finite if and only if \(A = \emptyset\)  or \(2|{\cal P}(A)| > |{\cal P}(A)|\). \ac{Howard/Spi\u siak} \cite{1994}.

Comment:

Back