We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
326 \(\Rightarrow\) 88 | Logic at Work: Essay Dedicated to the Memory of Helen Rasiowa, Wojtylak, 1999, |
88 \(\Rightarrow\) 268 |
Subalgebra lattices of unary algebras and an axiom of choice, Lampe, W. A. 1974, Colloq. Math. |
268 \(\Rightarrow\) 269 |
Subalgebra lattices of unary algebras and an axiom of choice, Lampe, W. A. 1974, Colloq. Math. |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
326: | 2-SAT: Restricted Compactness Theorem for Propositional Logic III: If \(\Sigma\) is a set of formulas in a propositional language such that every finite subset of \(\Sigma\) is satisfiable and if every formula in \(\Sigma\) is a disjunction of at most two literals, then \(\Sigma\) is satisfiable. (A literal is a propositional variable or its negation.) Wojtylak [1999] (listed as Wojtylak [1995]) |
88: | \(C(\infty ,2)\): Every family of pairs has a choice function. |
268: | If \({\cal L}\) is a lattice isomorphic to the lattice of subalgebras of some unary universal algebra (a unary universal algebra is one with only unary or nullary operations) and \(\alpha \) is an automorphism of \({\cal L}\) of order 2 (that is, \(\alpha ^{2}\) is the identity) then there is a unary algebra \(\frak A\) and an isomorphism \(\rho \) from \({\cal L}\) onto the lattice of subalgebras of \(\frak A^{2}\) with \[\rho(\alpha(x))=(\rho(x))^{-1} (= \{(s,t) : (t,s)\in\rho(x)\})\] for all \(x\in {\cal L}\). |
269: | For every cardinal \(m\), there is a set \(A\) such that \(2^{|A|^2}\ge m\) and there is a choice function on the collection of 2-element subsets of \(A\). |
Comment: