We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
133 \(\Rightarrow\) 90 |
Dedekind-Endlichkeit und Wohlordenbarkeit, Brunner, N. 1982a, Monatsh. Math. |
90 \(\Rightarrow\) 51 |
Variations of Zorn's lemma, principles of cofinality, and Hausdorff's maximal principle, Part I and II, Harper, J. 1976, Notre Dame J. Formal Logic |
51 \(\Rightarrow\) 25 |
Choice and cofinal well-ordered subsets, Morris, D.B. 1969, Notices Amer. Math. Soc. |
25 \(\Rightarrow\) 34 | clear |
34 \(\Rightarrow\) 19 |
Sur les fonctions representables analytiquement, Lebesgue, H. 1905, J. Math. Pures Appl. |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
133: | Every set is either well orderable or has an infinite amorphous subset. |
90: | \(LW\): Every linearly ordered set can be well ordered. Jech [1973b], p 133. |
51: | Cofinality Principle: Every linear ordering has a cofinal sub well ordering. Sierpi\'nski [1918], p 117. |
25: | \(\aleph _{\beta +1}\) is regular for all ordinals \(\beta\). |
34: | \(\aleph_{1}\) is regular. |
19: | A real function is analytically representable if and only if it is in Baire's classification. G.Moore [1982], equation (2.3.1). |
Comment: