We have the following indirect implication of form equivalence classes:

133 \(\Rightarrow\) 19
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
133 \(\Rightarrow\) 90 Dedekind-Endlichkeit und Wohlordenbarkeit, Brunner, N. 1982a, Monatsh. Math.
90 \(\Rightarrow\) 51 Variations of Zorn's lemma, principles of cofinality, and Hausdorff's maximal principle, Part I and II, Harper, J. 1976, Notre Dame J. Formal Logic
51 \(\Rightarrow\) 25 Choice and cofinal well-ordered subsets, Morris, D.B. 1969, Notices Amer. Math. Soc.
25 \(\Rightarrow\) 34 clear
34 \(\Rightarrow\) 19 Sur les fonctions representables analytiquement, Lebesgue, H. 1905, J. Math. Pures Appl.

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
133:  

Every set is either well orderable or has an infinite amorphous subset.

90:

\(LW\):  Every linearly ordered set can be well ordered. Jech [1973b], p 133.

51:

Cofinality Principle: Every linear ordering has a cofinal sub well ordering.  Sierpi\'nski [1918], p 117.

25:

\(\aleph _{\beta +1}\) is regular for all ordinals \(\beta\).

34:

\(\aleph_{1}\) is regular.

19:

A real function is analytically representable if and only if it is in Baire's classification. G.Moore [1982], equation (2.3.1).

Comment:

Back