We have the following indirect implication of form equivalence classes:

112 \(\Rightarrow\) 182
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
112 \(\Rightarrow\) 90 Equivalents of the Axiom of Choice II, Rubin/Rubin, 1985, page 79
90 \(\Rightarrow\) 51 Variations of Zorn's lemma, principles of cofinality, and Hausdorff's maximal principle, Part I and II, Harper, J. 1976, Notre Dame J. Formal Logic
51 \(\Rightarrow\) 25 Choice and cofinal well-ordered subsets, Morris, D.B. 1969, Notices Amer. Math. Soc.
25 \(\Rightarrow\) 34 clear
34 \(\Rightarrow\) 104 clear
104 \(\Rightarrow\) 182 clear

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
112:

\(MC(\infty,LO)\): For every family \(X\) of non-empty sets each of which can be linearly ordered there is a function \(f\) such that for all \(y\in X\), \(f(y)\) is a non-empty finite subset of \(y\).

90:

\(LW\):  Every linearly ordered set can be well ordered. Jech [1973b], p 133.

51:

Cofinality Principle: Every linear ordering has a cofinal sub well ordering.  Sierpi\'nski [1918], p 117.

25:

\(\aleph _{\beta +1}\) is regular for all ordinals \(\beta\).

34:

\(\aleph_{1}\) is regular.

104:

There is a regular uncountable aleph. Jech [1966b], p 165 prob 11.26.

182:

There is an aleph whose cofinality is greater than \(\aleph_{0}\).

Comment:

Back