We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
112 \(\Rightarrow\) 90 | Equivalents of the Axiom of Choice II, Rubin/Rubin, 1985, page 79 |
90 \(\Rightarrow\) 51 |
Variations of Zorn's lemma, principles of cofinality, and Hausdorff's maximal principle, Part I and II, Harper, J. 1976, Notre Dame J. Formal Logic |
51 \(\Rightarrow\) 208 |
Choice and cofinal well-ordered subsets, Morris, D.B. 1969, Notices Amer. Math. Soc. |
208 \(\Rightarrow\) 58 | clear |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
112: | \(MC(\infty,LO)\): For every family \(X\) of non-empty sets each of which can be linearly ordered there is a function \(f\) such that for all \(y\in X\), \(f(y)\) is a non-empty finite subset of \(y\). |
90: | \(LW\): Every linearly ordered set can be well ordered. Jech [1973b], p 133. |
51: | Cofinality Principle: Every linear ordering has a cofinal sub well ordering. Sierpi\'nski [1918], p 117. |
208: | For all ordinals \(\alpha\), \(\aleph_{\alpha+1}\le 2^{\aleph_\alpha}\). |
58: |
There is an ordinal \(\alpha\) such that \(\aleph(2^{\aleph_{\alpha }})\neq\aleph_{\alpha +1}\). (\(\aleph(2^{\aleph_{\alpha}})\) is Hartogs' aleph, the least \(\aleph\) not \(\le 2^{\aleph _{\alpha}}\).) |
Comment: