We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
426 \(\Rightarrow\) 8 |
On first and second countable spaces and the axiom of choice, Gutierres, G 2004, Topology and its Applications. |
8 \(\Rightarrow\) 24 | clear |
24 \(\Rightarrow\) 26 | Zermelo's Axiom of Choice, Moore, 1982, 66 Le¸cons sur la th´eorie des fonctions, Borel, [1898] |
26 \(\Rightarrow\) 209 | note-72 |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
426: | If \((X,\cal T) \) is a first countable topological space and \((\cal B(x))_{x\in X}\) is a family such that for all \(x \in X\), \(\cal B(x)\) is a local base at \(x\), then there is a family \(( \cal V(x))_{x\in X}\) such that for every \(x \in X\), \(\cal V(x)\) is a countable local base at \(x\) and \(\cal V(x) \subseteq \cal B(x)\). |
8: | \(C(\aleph_{0},\infty)\): |
24: | \(C(\aleph_0,2^{(2^{\aleph_0})})\): Every denumerable collection of non-empty sets each with power \(2^{(2^{\aleph_{0}})}\) has a choice function. |
26: | \(UT(\aleph_{0},2^{\aleph_{0}},2^{\aleph_{0}})\): The union of denumerably many sets each of power \(2^{\aleph _{0}}\) has power \(2^{\aleph_{0}}\). |
209: | There is an ordinal \(\alpha\) such that for all \(X\), if \(X\) is a denumerable union of denumerable sets then \({\cal P}(X)\) cannot be partitioned into \(\aleph_{\alpha}\) non-empty sets. |
Comment: