We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
133 \(\Rightarrow\) 90 |
Dedekind-Endlichkeit und Wohlordenbarkeit, Brunner, N. 1982a, Monatsh. Math. |
90 \(\Rightarrow\) 91 | The Axiom of Choice, Jech, 1973b, page 133 |
91 \(\Rightarrow\) 79 | clear |
79 \(\Rightarrow\) 369 | clear |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
133: | Every set is either well orderable or has an infinite amorphous subset. |
90: | \(LW\): Every linearly ordered set can be well ordered. Jech [1973b], p 133. |
91: | \(PW\): The power set of a well ordered set can be well ordered. |
79: | \({\Bbb R}\) can be well ordered. Hilbert [1900], p 263. |
369: | If \(\Bbb R\) is partitioned into two sets, at least one of them has cardinality \(2^{\aleph_0}\). |
Comment: