We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
114 \(\Rightarrow\) 90 |
Products of compact spaces in the least permutation model, Brunner, N. 1985a, Z. Math. Logik Grundlagen Math. |
90 \(\Rightarrow\) 91 | The Axiom of Choice, Jech, 1973b, page 133 |
91 \(\Rightarrow\) 309 | Equivalents of the Axiom of Choice II, Rubin, 1985, theorem 5.7 |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
114: | Every A-bounded \(T_2\) topological space is weakly Loeb. (\(A\)-bounded means amorphous subsets are relatively compact. Weakly Loeb means the set of non-empty closed subsets has a multiple choice function.) |
90: | \(LW\): Every linearly ordered set can be well ordered. Jech [1973b], p 133. |
91: | \(PW\): The power set of a well ordered set can be well ordered. |
309: | The Banach-Tarski Paradox: There are three finite partitions \(\{P_1,\ldots\), \(P_n\}\), \(\{Q_1,\ldots,Q_r\}\) and \(\{S_1,\ldots,S_n, T_1,\ldots,T_r\}\) of \(B^3 = \{x\in {\Bbb R}^3 : |x| \le 1\}\) such that \(P_i\) is congruent to \(S_i\) for \(1\le i\le n\) and \(Q_i\) is congruent to \(T_i\) for \(1\le i\le r\). |
Comment: