We have the following indirect implication of form equivalence classes:

112 \(\Rightarrow\) 222
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
112 \(\Rightarrow\) 90 Equivalents of the Axiom of Choice II, Rubin/Rubin, 1985, page 79
90 \(\Rightarrow\) 91 The Axiom of Choice, Jech, 1973b, page 133
91 \(\Rightarrow\) 79 clear
79 \(\Rightarrow\) 70 clear
70 \(\Rightarrow\) 222 The strength of the Hahn-Banach theorem, Pincus, D. 1972c, Lecture Notes in Mathematics

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
112:

\(MC(\infty,LO)\): For every family \(X\) of non-empty sets each of which can be linearly ordered there is a function \(f\) such that for all \(y\in X\), \(f(y)\) is a non-empty finite subset of \(y\).

90:

\(LW\):  Every linearly ordered set can be well ordered. Jech [1973b], p 133.

91:

\(PW\):  The power set of a well ordered set can be well ordered.

79:

\({\Bbb R}\) can be well ordered.  Hilbert [1900], p 263.

70:

There is a non-trivial ultrafilter on \(\omega\). Jech [1973b], prob 5.24.

222:

There is a non-principal measure on \(\cal P(\omega)\).

Comment:

Back