We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
112 \(\Rightarrow\) 90 | Equivalents of the Axiom of Choice II, Rubin/Rubin, 1985, page 79 |
90 \(\Rightarrow\) 91 | The Axiom of Choice, Jech, 1973b, page 133 |
91 \(\Rightarrow\) 79 | clear |
79 \(\Rightarrow\) 203 | clear |
203 \(\Rightarrow\) 306 | clear |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
112: | \(MC(\infty,LO)\): For every family \(X\) of non-empty sets each of which can be linearly ordered there is a function \(f\) such that for all \(y\in X\), \(f(y)\) is a non-empty finite subset of \(y\). |
90: | \(LW\): Every linearly ordered set can be well ordered. Jech [1973b], p 133. |
91: | \(PW\): The power set of a well ordered set can be well ordered. |
79: | \({\Bbb R}\) can be well ordered. Hilbert [1900], p 263. |
203: | \(C\)(disjoint,\(\subseteq\Bbb R)\): Every partition of \({\cal P}(\omega)\) into non-empty subsets has a choice function. |
306: | The set of Vitali equivalence classes is linearly orderable. (Vitali equivalence classes are equivalence classes of the real numbers under the relation \(x\equiv y\leftrightarrow (\exists q\in{\Bbb Q})(x-y = q)\).). |
Comment: