We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
112 \(\Rightarrow\) 90 | Equivalents of the Axiom of Choice II, Rubin/Rubin, 1985, page 79 |
90 \(\Rightarrow\) 91 | The Axiom of Choice, Jech, 1973b, page 133 |
91 \(\Rightarrow\) 361 | Equivalents of the Axiom of Choice II, Rubin, 1985, theorem 5.7 |
361 \(\Rightarrow\) 362 | Zermelo's Axiom of Choice, Moore, 1982, page 325 |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
112: | \(MC(\infty,LO)\): For every family \(X\) of non-empty sets each of which can be linearly ordered there is a function \(f\) such that for all \(y\in X\), \(f(y)\) is a non-empty finite subset of \(y\). |
90: | \(LW\): Every linearly ordered set can be well ordered. Jech [1973b], p 133. |
91: | \(PW\): The power set of a well ordered set can be well ordered. |
361: | In \(\Bbb R\), the union of a denumerable number of analytic sets is analytic. G. Moore [1982], pp 181 and 325. |
362: | In \(\Bbb R\), every Borel set is analytic. G. Moore [1982], pp 181 and 325. |
Comment: