We have the following indirect implication of form equivalence classes:

164 \(\Rightarrow\) 182
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
164 \(\Rightarrow\) 91 Dedekind-Endlichkeit und Wohlordenbarkeit, Brunner, N. 1982a, Monatsh. Math.
91 \(\Rightarrow\) 79 clear
79 \(\Rightarrow\) 94 clear
94 \(\Rightarrow\) 34 Non-constructive properties of the real numbers, Howard, P. 2001, Math. Logic Quart.
34 \(\Rightarrow\) 104 clear
104 \(\Rightarrow\) 182 clear

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
164:

Every non-well-orderable set has an infinite subset with a Dedekind finite power set.

91:

\(PW\):  The power set of a well ordered set can be well ordered.

79:

\({\Bbb R}\) can be well ordered.  Hilbert [1900], p 263.

94:

\(C(\aleph_{0},\infty,{\Bbb R})\): Every denumerable family of non-empty sets of reals  has a choice function. Jech [1973b], p 148 prob 10.1.

34:

\(\aleph_{1}\) is regular.

104:

There is a regular uncountable aleph. Jech [1966b], p 165 prob 11.26.

182:

There is an aleph whose cofinality is greater than \(\aleph_{0}\).

Comment:

Back