We have the following indirect implication of form equivalence classes:

164 \(\Rightarrow\) 305
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
164 \(\Rightarrow\) 91 Dedekind-Endlichkeit und Wohlordenbarkeit, Brunner, N. 1982a, Monatsh. Math.
91 \(\Rightarrow\) 305 Equivalents of the Axiom of Choice II, Rubin, 1985, theorem 5.7

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
164:

Every non-well-orderable set has an infinite subset with a Dedekind finite power set.

91:

\(PW\):  The power set of a well ordered set can be well ordered.

305:

There are \(2^{\aleph_0}\) Vitali equivalence classes. (Vitali equivalence classes are equivalence classes of the real numbers under the relation \(x\equiv y\leftrightarrow(\exists q\in{\Bbb Q})(x-y=q)\).). \ac{Kanovei} \cite{1991}.

Comment:

Back