We have the following indirect implication of form equivalence classes:

202 \(\Rightarrow\) 273
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
202 \(\Rightarrow\) 91 note-75
91 \(\Rightarrow\) 273 Equivalents of the Axiom of Choice II, Rubin, 1985, theorem 5.7

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
202:

\(C(LO,\infty)\): Every linearly ordered family of non-empty sets has  a choice function.

91:

\(PW\):  The power set of a well ordered set can be well ordered.

273:

There is a subset of \({\Bbb R}\) which is not Borel.

Comment:

Back