We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
337 \(\Rightarrow\) 92 | clear |
92 \(\Rightarrow\) 94 | clear |
94 \(\Rightarrow\) 13 | The Axiom of Choice, Jech, 1973b, page 148 problem 10.1 |
13 \(\Rightarrow\) 199(\(n\)) | clear |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
337: | \(C(WO\), uniformly linearly ordered): If \(X\) is a well ordered collection of non-empty sets and there is a function \(f\) defined on \(X\) such that for every \(x\in X\), \(f(x)\) is a linear ordering of \(x\), then there is a choice function for \(X\). |
92: | \(C(WO,{\Bbb R})\): Every well ordered family of non-empty subsets of \({\Bbb R}\) has a choice function. |
94: | \(C(\aleph_{0},\infty,{\Bbb R})\): Every denumerable family of non-empty sets of reals has a choice function. Jech [1973b], p 148 prob 10.1. |
13: | Every Dedekind finite subset of \({\Bbb R}\) is finite. |
199(\(n\)): | (For \(n\in\omega-\{0,1\}\)) If all \(\varSigma^{1}_{n}\), Dedekind finite subsets of \({}^{\omega }\omega\) are finite, then all \(\varPi^1_n\) Dedekind finite subsets of \({}^{\omega} \omega\) are finite. |
Comment: