We have the following indirect implication of form equivalence classes:

51 \(\Rightarrow\) 35
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
51 \(\Rightarrow\) 337 Non-constructive properties of the real numbers, Howard, P. 2001, Math. Logic Quart.
337 \(\Rightarrow\) 92 clear
92 \(\Rightarrow\) 94 clear
94 \(\Rightarrow\) 35 Non-constructive properties of the real numbers, Howard, P. 2001, Math. Logic Quart.

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
51:

Cofinality Principle: Every linear ordering has a cofinal sub well ordering.  Sierpi\'nski [1918], p 117.

337:

\(C(WO\), uniformly linearly ordered):  If \(X\) is a well ordered collection of non-empty sets and there is a function \(f\) defined on \(X\) such that for every \(x\in X\), \(f(x)\) is a linear ordering of \(x\), then there is a choice function for \(X\).

92:

\(C(WO,{\Bbb R})\):  Every well ordered family of non-empty subsets of \({\Bbb R}\) has a choice function.

94:

\(C(\aleph_{0},\infty,{\Bbb R})\): Every denumerable family of non-empty sets of reals  has a choice function. Jech [1973b], p 148 prob 10.1.

35:

The union of countably many meager subsets of \({\Bbb R}\) is meager. (Meager sets are the same as sets of the first category.) Jech [1973b] p 7 prob 1.7.

Comment:

Back