We have the following indirect implication of form equivalence classes:

92 \(\Rightarrow\) 93
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
92 \(\Rightarrow\) 170 Non-constructive properties of the real numbers, Howard, P. 2001, Math. Logic Quart.
170 \(\Rightarrow\) 93 Zermelo's Axiom of Choice, Moore, [1982]

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
92:

\(C(WO,{\Bbb R})\):  Every well ordered family of non-empty subsets of \({\Bbb R}\) has a choice function.

170:

\(\aleph_{1}\le 2^{\aleph_{0}}\).

93:

There is a non-measurable subset of \({\Bbb R}\).

Comment:

Back