We have the following indirect implication of form equivalence classes:

211 \(\Rightarrow\) 104
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
211 \(\Rightarrow\) 94 Non-constructive properties of the real numbers, Howard, P. 2001, Math. Logic Quart.
94 \(\Rightarrow\) 34 Non-constructive properties of the real numbers, Howard, P. 2001, Math. Logic Quart.
34 \(\Rightarrow\) 104 clear

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
211:

\(DCR\): Dependent choice for relations on \(\Bbb R\): If \(R\subseteq\Bbb R\times\Bbb R\) satisfies \((\forall x\in \Bbb R)(\exists y\in\Bbb R)(x\mathrel R y)\) then there is a sequence \(\langle x(n): n\in\omega\rangle\) of real numbers such that \((\forall n\in\omega)(x(n)\mathrel R x(n+1))\).

94:

\(C(\aleph_{0},\infty,{\Bbb R})\): Every denumerable family of non-empty sets of reals  has a choice function. Jech [1973b], p 148 prob 10.1.

34:

\(\aleph_{1}\) is regular.

104:

There is a regular uncountable aleph. Jech [1966b], p 165 prob 11.26.

Comment:

Back