We have the following indirect implication of form equivalence classes:

181 \(\Rightarrow\) 35
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
181 \(\Rightarrow\) 8 clear
8 \(\Rightarrow\) 27 clear
27 \(\Rightarrow\) 31 clear
31 \(\Rightarrow\) 35 clear

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
181:

\(C(2^{\aleph_0},\infty)\): Every set \(X\) of non-empty sets such that \(|X|=2^{\aleph_0}\) has a choice function.

8:

\(C(\aleph_{0},\infty)\):

27:

\((\forall \alpha)( UT(\aleph_{0},\aleph_{\alpha}, \aleph_{\alpha}))\): The  union of denumerably many sets each of power \(\aleph_{\alpha }\) has power \(\aleph_{\alpha}\). Moore, G. [1982], p 36.

31:

\(UT(\aleph_{0},\aleph_{0},\aleph_{0})\): The countable union theorem:  The union of a denumerable set of denumerable sets is denumerable.

35:

The union of countably many meager subsets of \({\Bbb R}\) is meager. (Meager sets are the same as sets of the first category.) Jech [1973b] p 7 prob 1.7.

Comment:

Back