We have the following indirect implication of form equivalence classes:
| Implication | Reference |
|---|---|
| 203 \(\Rightarrow\) 94 | note-67 |
| 94 \(\Rightarrow\) 74 | note-10 |
Here are the links and statements of the form equivalence classes referenced above:
| Howard-Rubin Number | Statement |
|---|---|
| 203: | \(C\)(disjoint,\(\subseteq\Bbb R)\): Every partition of \({\cal P}(\omega)\) into non-empty subsets has a choice function. |
| 94: | \(C(\aleph_{0},\infty,{\Bbb R})\): Every denumerable family of non-empty sets of reals has a choice function. Jech [1973b], p 148 prob 10.1. |
| 74: | For every \(A\subseteq\Bbb R\) the following are equivalent:
|
Comment: