We have the following indirect implication of form equivalence classes:
Implication | Reference |
---|---|
168 \(\Rightarrow\) 100 | clear |
100 \(\Rightarrow\) 9 |
On the existence of large sets of Dedekind cardinals, Tarski, A. 1965, Notices Amer. Math. Soc. The Axiom of Choice, Jech, 1973b, page 162 problem 11.8 |
9 \(\Rightarrow\) 376 | clear |
Here are the links and statements of the form equivalence classes referenced above:
Howard-Rubin Number | Statement |
---|---|
168: | Dual Cantor-Bernstein Theorem:\((\forall x) (\forall y)(|x| \le^*|y|\) and \(|y|\le^* |x|\) implies \(|x| = |y|)\) . |
100: | Weak Partition Principle: For all sets \(x\) and \(y\), if \(x\precsim^* y\), then it is not the case that \(y\prec x\). |
9: | Finite \(\Leftrightarrow\) Dedekind finite: \(W_{\aleph_{0}}\) Jech [1973b]: \(E(I,IV)\) Howard/Yorke [1989]): Every Dedekind finite set is finite. |
376: | Restricted Kinna Wagner Principle: For every infinite set \(X\) there is an infinite subset \(Y\) of \(X\) and a function \(f\) such that for every \(z\subseteq Y\), if \(|z| \ge 2\) then \(f(z)\) is a non-empty proper subset of \(z\). |
Comment: