We have the following indirect implication of form equivalence classes:

168 \(\Rightarrow\) 64
given by the following sequence of implications, with a reference to its direct proof:

Implication Reference
168 \(\Rightarrow\) 100 clear
100 \(\Rightarrow\) 9 On the existence of large sets of Dedekind cardinals, Tarski, A. 1965, Notices Amer. Math. Soc.
The Axiom of Choice, Jech, 1973b, page 162 problem 11.8
9 \(\Rightarrow\) 64 The independence of various definitions of finiteness, Levy, A. 1958, Fund. Math.
clear

Here are the links and statements of the form equivalence classes referenced above:

Howard-Rubin Number Statement
168:

Dual Cantor-Bernstein Theorem:\((\forall x) (\forall y)(|x| \le^*|y|\) and \(|y|\le^* |x|\) implies  \(|x| = |y|)\) .

100:

Weak Partition Principle:  For all sets \(x\) and \(y\), if \(x\precsim^* y\), then it is not the case that \(y\prec x\).

9:

Finite \(\Leftrightarrow\) Dedekind finite: \(W_{\aleph_{0}}\) Jech [1973b]: \(E(I,IV)\) Howard/Yorke [1989]): Every Dedekind finite set is finite.

64:

\(E(I,Ia)\) There are no amorphous sets. (Equivalently, every infinite set is the union of two disjoint infinite sets.)

Comment:

Back